五、方阵汇流箱布置实例分析
如图6为某屋顶1MW工程项目,当时还处于施工阶段,汇流箱已经安装完毕,红色圆圈标记的是其中一个汇流箱的安装位置,该汇流箱对应方阵的功率为76.8kW,包含320片GES-240P电池组件,以16串并联汇入1个汇流箱,再和其他汇流箱汇入直流配电柜,配电房位于厂房的1楼南侧。因为彩钢瓦上不太适合放置,东面女儿墙位置较矮,西面为其他方阵,也不适合安装,故汇流箱布置方案最终选择以壁挂的形式固定在正南侧女儿墙上,此时它的位置已不在方阵内部,方阵内部E点是根据曼哈顿距离算法得到的1*4mm2电缆使用量最优化点,如图6(b)所示的五个位置,在电缆使用量、成本费用、压降和线损会存在一定的差异,详细计算数据参考下文表2-表6。
图6 施工阶段某复杂方阵汇流箱安装位置和组串接线图
第一步工作是通过CAD量测各个输出端的坐标值,数据参考表1,并分别算出电缆使用量、压降和线损等。
表1 各个输出端的坐标值
1)电缆使用量对比
从表2可知, 1*4mm2电缆在理论最优点位置使用量最少,在A位置电缆使用量最多,但A位置70mm2电缆使用量明显比其他方案要少,A方案由于70mm2电缆的使用量明显减少,故比最优方案铜使用量减少14%。
表2 几种布置方案电缆长度及用铜量比较(单位:m)
2)电缆成本对比
假设PV1-F 1*4mm2电缆的价格为3.2元/m,安装费用为3.5元/m,70mm2电缆价格70元/m,安装费用为8元/m,那么方案A的电缆费用为10146元,比最优方案费用增加成本788元,其他详见表5。
3)压降和功率损耗对比
在标准测试条件下,组串的电压Vm为602V,对应的电流为7.96A,最大功率为4.8kW。在ABCDE五种汇流箱布置方案中,表3和表4给出了在STC条件下支线(组串至汇流箱)、干线(汇流箱至逆变器直流侧)的压降值和功率损耗(线损)表,计算线损时组件自身的电缆长度以0.9m计入,4mm2的直流电缆的电阻是不超过4.375Ω/km,70 mm2的直流电缆的电阻0.268Ω/km,经计算可知A方案功率损耗最小。
表3STC条件下支线和干线压降表
表4STC条件下支线和干线功率损耗