太阳能电池的背钝化技术有效地提高了电池的效率,但是在丝网印刷中对铝粉浆和硅之间的接触的优化所起的作用是微不足道的,而且需要更深地理解金属半导体之间的接触效应。事实上,当串联电阻减少时,接触面积和指间距的配合是一个至关重要的问题。另一方面,用高质量P+掺杂层[背场(BSF)]的形成来提高电池的性能一直很具有挑战性。最近,接触开缝中铝的高重叠对于生成良好的BSF和使接触电阻的最小化是至关重要的,从而背场的设计能够影响串阻的损失和接触形成的过程。本文中,研究的以液体铝和硅之间的相互扩散为基础得到最优最小的背场接触间距。这些结果已经应用在丝网印刷的背面接触式和背面钝化硅的太阳能电池上。
图1(a)所示的是背面钝化硅和背面接触式的太阳能电池的横截面。3个变量用来描述背
面结构--接触开缝的宽度(LCO),d1;铝层中扩散硅的最大传播极限,d2;接触面积,LP,所以,(d2-d1)/2代表了在LCO的一侧(远离接触面积)的铝中的硅的传播。如图所示,在图1(a)的截面模型中,LCO,d1限制了硅和铝的接触面积,电池背面全部覆盖着铝,LCO在结构的背面,而BSF在LCO中形成,这是铝硅的相互扩散。图1(b)的显微镜图片所示的是和图1(a)相同背面结构的太阳能电池背面的一部分,深灰色部分(在d2里)在铝层中是显而易见的,但不代表BSF的形成,因为它们比LCD(d2>d1)要宽,理解这种现象可以促进现在研究的发展。
抛光的Czochralski P型硅片,电阻率为1.5±0.5Ωcm,覆盖着用加强等离子体化学蒸汽沉积的介质绝缘层。LCO(d1)可以用丝网印刷蚀刻膏来得到,其中包括的磷酸是一种有效的介质场的腐蚀剂,介质的腐蚀是通过在330℃的红外炉中加热硅片4min。干刻蚀膏会在几秒内在充满了用去离子水稀释的0.2%的KOH的超声波清洗器中被清除。d1的值可在100-150μm范围内,为50μm的差距(但真实值约比其大20μm,这是由于刻蚀膏的扩散),丝网印刷后多出的20μm的铝接触完全覆盖了背钝化和开缝。样品在烧结炉中烧结后会形成合金,3个发射峰值温度是:750℃、850℃和950℃。深灰色可见区域的宽度值可以用光学显微镜测量。
扫描左侧二维码,关注【阳光工匠光伏网】官方微信
投稿热线:0519-69813790 ;投稿邮箱:edit@21spv.com ;
投稿QQ:76093886 ;投稿微信:yggj2007
我来说两句