此外环境温度对组件的输出电压有很大影响,从25°到-10°之间组件输出电压是一个较陡的上升曲线,在超过-10°以后电压上升变化较小。组件的电压温度系数-0.35%/k(不同厂家略有差异),在温度系数余量方面我们推荐考虑30*0.35%=10.5%,综合海拔与温度的两个余量考量因素,我们推荐系统的电压设计余量为20%,以下为推荐的余量修正后的系统电压情况:
表三 光伏DC1500V系统不同功率组件系统修正电压:
功率 |
260W |
265W |
270W |
275W |
最大系统 |
|
|
|
|
最大系统 |
|
|
|
|
备注:本数据根据峰值数据余量20%计算修正,推荐采用。 |
我们从上图发现通过采用峰值数据计算系统工作电压最大值在1250V以下,采用DC1500V额定工作电压的光伏断路器可以满足系统要求。但是值得注意的是系统修正最大开路电压超过断路器的最高额定有效工作电压1.5%,虽然这只是修正得出的结果并不代表实际峰值,但海拔超过3000米后开路电压会超过断路器的最高有效工作电压,系统开路电压不应超过断路器的最高有效工作电压是我们选型的基本守则。
其次:我们看一下电流的选择,电流的选择在DC1000V系统按照每串12A计算后取断路器优选值的速算办法办法是主流,这个方案也是我在2011年底的研究成果。在DC1500V系统计算方式没有错,但是不能再采用这个结果了。组件的效率提升是近年组件价格下降的主要原因,也就是在相同的单位面积中输出更高功率,组件面积没有增大但功率增加了,这必然会使组件电压和电流输出都提高,在260W以上光伏系统中都要逐步考虑增加断路器的额定工作电流,电流的提升与DC1500V还是DC1000V系统没有关系,这是组件输出参数提升带来的问题。
表四:最大工作电流计算表
功率 |
260W |
265W |
270W |
275W |
最大工作电流 |
8.49A |
8.63A |
8.77A |
8.82A |
修正后电流 |
12.735A |
12.945A |
13.155A |
13.23A |
16路汇流箱 |
|
|
|
|
我们对光伏断路器的电流选型计算推荐用组件标称最大工作电流*150%的简单速算法,据圣昂电气团队从2010年开始跟踪调查数据库显示,130%的经验余量设计是临界值,非常容易出现误跳事故。
关于断路器推荐余量50%的原因有三点,1.辐照度影响:组件电流参数是辐照度1000的基准,辐照条件好的地区峰值辐照度在1200左右,这样至少消耗掉了20%设计余量,西北地区2季度最易超发。2.设备安装环境都比较恶劣、散热差,设备内部温度都很高,这对断路器有降容的影响,现场实测发现过最高温度超过70°。3.不同厂家断路器温升控制差距很大,我们的光伏断路器在串联后的温升不超过60K,一般要在70K以上,超过80K不合格产品也大行其道,超过80K温升的主要诱因是串联部分没有使用焊接方式,铜排螺钉安装发热过高。在2012年西北地区某韩国品牌断路器产品串联温升不能满足使用大面积误跳闸还历历在目。我们推荐的电流余量精确设计选择是30%经验余量+(峰值辐照度/1000-1)*100%=项目实际电流设计余量,简单速算按照50%计算
最后总结一下我们的观点:光伏DC1500V系统我们推荐单串组件3*11=33块的方案,汇流箱出线及逆变器进线断路器工作电压选择DC1500V,电流最小选择225A,如采用了串联是使用螺钉安装铜排等非焊接连接的方式,电流建议再选大一档到250A.光伏断路器的选型推荐大家以峰值参数作为计算依据。